MACHINE LEARNING Questions and Answers

What is the general principle of an ensemble method and what is bagging and boosting in ensemble method?

The general principle of an ensemble method is to combine the predictions of several models built with a given learning algorithm in order to improve robustness over a single model.  Bagging is a method in ensemble for improving unstable estimation or classification schemes.  While boosting method are used sequentially to reduce the bias of the combined model.  Boosting and Bagging both can reduce errors by reducing the variance term.